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Systéme LID: excitation sinusoidale

m Systeme LID: rappel

fln] gln] = Sp{f}n] = (h= f)[n]
IS
d[n] Sp{0}[n] = hln]
Hlnl = hlk]fln— K Stabilit¢ BIBO < h € £,(Z)

keZ
m Excitation sinusoidale

ewy[n] = ei“om = cos(won) + jsin(won) avec wy € (—, ] (fixé)

(b ew,)[n] = hlk]e™™=F) = " hk]elmoe vl = (Z h[k]ej“’”’“> € 1)

keZ keZ keZ

g

-~

H(el®0)=Aei?
NB: e, € o (Z) (borné) implique que la convolution est bien définie pour h € ¢1(Z)
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Définition de la DTFT

La transformée de Fourier a temps discret (discrete-time Fourier transform, DTFT) du
signal f[n| est donnée par I'expression

FalfHw) =F{ ) fln)s(- —n)}(w)

nez

" flafen

NneZ

Remarques
= Bien qu’elle s’applique a des signaux discrets, la DTFT est une fonction (ou distribution)
de la variable réelle w et est de nature continue.

= La DTFT d’un signal discret est périodique de période 2. Quand on la trace, on se
limite donc toujours a l'intervalle w € [—, 7).

= La convergence de la somme vers une vraie fonction n'est assurée que si f € ¢1(Z);
c-a-d. si Y, o | fIn]| < oo
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Lien avec la transformée en z

Lorsque la transformée en z de f[n] est convergente sur le cercle unité {z = e/ : w € [—, 7},
ona

F(e) =Y flnlz™"|__ =Y _ flnle " = Fa{f}(w)

new Nnew

On utilisera donc systématiquement la notation F'(e)’) pour désigner la DTFT de f[n].

n 1
Exemple: si f[n] = (1) u[n] alors Fa{f}(w) = —F——
1-— ie_J“
Cependant, la DTFT est plus permissive que la transformée en z.

Exemple:  fln] =1 2% Z e W =21 (Z d(w — 2n7r)> = 270 perio(w)

nez nez

alors que la transformée en z de ce signal n’existe que de fagon formelle,
et pas analytique.
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Vecteurs propres

Systeme linéaire de dimension finie

u A-u
_— H — quand u est un vecteur propre de H

m Opérateur lindaire RY - RY 1y =H -x

= Matrice de transformation symétrique: H € RVx¥V

= Vecteurs propres: uy, ..., uy € RV avec ||u, |2 = 1 et (u,, ) = m_n

H-u,=X,-u, ou M\, € R (valeurs propres)
= Matrice des vecteurs propres: U = [u; - --uy] € RV*¥

= Diagonalisation: H = UAU7T avec A = diag(\1,..., \n)
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vecteurs propres/analyse de Fourier

Systeme LID

ew[n] = e Ay - €™ ou A\, = A(w)eje(‘*’) cC
S Sh S

m Opérateur LID f+— hx f:l(Z) > ln(Z) < heli(Z)

= Signaux “propres” {e,[]} avec |le,||¢.. = 1: sinusoides complexes

we(—m,m]

Sh{ew} = Aw-ew oU A, = H(e)) = Sp{e,}[0] (valeurs propres)

= Transformation de Fourier: Fq : f +— F(e/*) = (f, e,) Z flk]e i<k
kEZ

= Diagonalisation: S;, = F; 'AgFa avec Ay : F(e/*) — H(e)*) - F(el¥)

Conséquences pratiques: la réponse d'un systéeme LID discret a une excitation sinusoidale
complexe est une sinusoide complexe de méme fréquence avec un facteur d’atténuation A et
un déphasage 6 qui dépendent de la fréquence. Grace a cette propriété, la convolution peut se
calculer par simple pondération (multiplication) dans le domaine de Fourier.

Unser-Vandergheynst / Sig & Sys Il 10-8



Lien avec la transformée de Fourier continue

Un signal discret f[n] étant représentable par un signal continu

f[n] représentation con'[inue> fT (t) _ Z f[n] . 5(t B nT)

nez

on remarque que F(e“T) = F{ fr}H{w).

En particulier, si z(t) est un signal continu a bande limitée dans w € [—7, 7] et si
f[n] = z(nT") sont ses échantillons a la fréquence 1/T, alors on sait (Shannon) que

x(t) = sinc(t/T) x fr(t).
D’ou le lien entre la DTFT et la transformée de Fourier en temps continu
Fla}(w) = X (w) = F(e*T) - Trect <§)

T F(e“T), siwel-3,

]

S

0, sinon

NB: > z(t,)e " At estla somme de Riemann de l'intégrale / z(t)e ¥t
———

R
flnjemiwnT T
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De maniere plus générale, on peut appliquer la formule de Poisson: Si f[n] = x(nT)
sont les échantillons d’un signal a temps continu z(t), alors
, 1 w 1 w — 21k
F(eY) = =X| = x| =
k0
ce qui montre que la DTFT est une approximation de la transformée de Fourier de la
fonction x(Tt).
5 025 ODTFT 1 15 0 05 1
7R /)’\\’X
Exemple: DTFT d’échantillons T
de la fonction z(t) = rect(t—1) 081 [ '
pour "= 0.2,0.1, et 0.25. 0.6f 1.
|
0.4f o —
02} e L
0 .
—45 -2 0 2 4m
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Propriétés de la DTFT

m Relations de bases

Elles sont déduites de celles de la transformée en z.

= complexe conjugué: Fa{f Hw) = (F(e ™))~

= renversement f¥[n] = fl-n]:  Fal{f'}(w) = F(e %) = (F(e))"

= décalage: Fa{fl- = nol}(w) = e " F(¥), ng€Z
= modulation: Fa{eo" fn]} (w) = F(el@7w0))

m Relation de symétrie
= symétrie Hermitienne:  fn] réel < F(e™i) = (F(e?))”
= symétrieenng:  f[n] = flno —n] <& F(¥)=eMYF(e7%), nygeZ
= antisymétrie en ng:  f[n] = —flng—n] & F(¥)=—eM0@F(e7%) ngelZ

NB: les symétries sont importantes! Elle permettent de vérifier les calculs.
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Périodicité de la DTFT

m La DTFT est 2w-périodique

VweR: F@Hm) =" flk]e IW20F = p(el) F(el)
kEZ e—jwk 1

m Série de Fourier de la DTFT

= Base orthonormale de Fourier pour l'interval w € [—7, 71]: {™},cz
1 [t

= Produit scalaire: (X,Y) 1, ([—xx]) = o X(w)Y* (w)dw

= Série de Fourier: F(e/*) = Z Cn@“" = Z flnle ™ = fn]=c_,

nez nez

En effet: c_,. = <F(8Jw), e_jkw>L2([_ﬂ.’ﬂ.]) = Z f[n] <e—jwn7 e—jkw>L2([_W7ﬂ]) = f[]{}]

nez hd
§[n—kK]
1 _
& fln] = Py F(e“)e“dw est le neme coefficient de Fourier de F(e).
™

—Tr

Unser-Vandergheynst / Sig & Sys Il 10-12



Propriétés de la DTFT (suite)

= Stabilité: feti(Z) = F(e) bornée et continue.
. . . N
= Inversion: fln] = FyH{F () }n] = 7 /F(eJ“’)eJ”“’dw
= Convolution: Fa{f * g}(w) = F(e¥) - G(el¥)
. L[ (o
= Multiplication: Falfln] - g[n]}(w) = 7 /F(ejf) -G (@ 79))dg

— T

. Parseval: 5" fln) - alnl* = - / Fe). (G(ej“’)>*dw

new

Multiplication par n¥:  Fa{n” f[n]}(w) = (j)k%{F(ej‘”)}

d* -
) . k — (3 k Jw
Moment d’ordre : nEEZn fln] = () o {F(e )}

w=0
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Transformation de Fourier et filtrage

Leffet d’'un systéme LID, S;, : f — h x f, se traduit par une multiplication de la
DTFT du signal par H(e/“) ou certaines composantes spectrales sont amplifiées
ou atténuées et, éventuellement, déphasées. On parle alors de filtrage.

m Caractéristiques spectrales
= H(elv) = Fq{h}(w): réponse fréquentielle du systéme (ou filtre discret).

= Borne supérieure : Hyax = SUp,,c[_r 1 |H(e1)| < 00

= Borne inférieure : Hyin = inf,e_r +r |[H ()] >0
m Conséquence de la relation de Parseval
1 & " 2 fo 2
o llhx 712, = 2_/ H ()| F ()] *dw
T
1 " jwh |2 2 2 1 " jwH |2
min | o _ |F(eJ )| dw < Hh*fHE < Hmax o ‘F(GJ )| dw
21 2 2

= H?
- -7

s Vf €la(Z):  Huinllflle, < [[h* flle, < Humaxl| flle,

—T
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Stabilité au sense /5(Z) et filtrage inverse

Réponse fréquentielle: H (e)*) Zh nle " = Fa{h}(w)
nez

telle que 0<  Hpin < [H(E)| < Hpax < +00

Théoreme
Sn: fr— hxfestlystable << Hpax < 00.

Spécifiquement,ona  Vf € l5(Z) :  ||h* flle, < Hmaxl||f||e,-

NB: Condition moins restrictive que h € ¢1(Z)

Inverse de convolution

Lopérateur Sy, : f — h* f avec Hyax < 00 est inversible sur /5(Z) si et seulement
si sa réponse frequentielle est bornée en dessous (c.-a-d. H i, > 0). Alors, S;l e
hiny * f avec

1
1
hinv [n] - fd {H(ej‘“) } [n]
Conditionnement: Hyyax/ Hinin

Unser-Vandergheynst / Sig & Sys Il

Exemples de filtres
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m Filtre passe-bas idéal discret Rappel:
® hideal|n] = gsinc (%) avec T > 1 sine (£) > Trect (42)
s Formule de Poisson (périodisation):
Higeal(e/*) = rect( ) pour w € [—m, 4]
m Bornes: Hy,ax = 1, Hpin= 0
: —n/T /T |

= Non-invertible

m Filtre du premier ordre

= he[n] = a™uln] avec |a| < 1
[ Ha(ejw) — 1—ale*j‘*’ /X

= Invertible !

Unser-Vandergheynst / Sig & Sys Il
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Signal discret DTFT (Fourier discret)

Définition £l F(e) £ flnJe ivn
nez
Renversement (f[n])v = fl-n] F(e %) = F(e*)V
Conjugué (fln])” (F(e73))"
Décalage fln — ng] e~ Iwno [(ew)
Modulation elwon fn] F(el(@=wo))
Mult. par monéne n* f[n) i d* - F(e?)
Convolution (h* f)[n] H(e)F(el¥)
inlicati L[ i3 j(w=¢)
Multiplication fln]g[n] Dy F(e%)G(e )d¢
™ —Tr
Somme >nez fIn] = F()| _,=F(Q)
% 1 [7 - Ny
Parseval =2 flnl(gln])" = o ) F(e)(G(e™)) dw
Unser-Vandergheynst / Sig & Sys Il nez 10-17
Signal discret DTFT (Fourier discret)
% Iperio(W) = Z 0(w+ 2mm)
meZ

elwom - y €R (27)0perio(w — wo)

cos(won) T (Operio (W + wo) + dperio(w — wp))

sin(won) T (Operio(w + wo) — dperio(w — wo))

d[n —mngl, no€Z e iwno

n>0 1
U[TL] = ]l+[’l’L] = sin_on 1_ e iw + '/T(Sperio(w)
In| <N sin (2N;1)“’
1-n..nn] = sinon sin &
2
e*u[n], Re(a) < T
N_1)! 1 N
% e u[n], Re(a) <0 (1—6—0‘_3‘”)
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10.2 LA TRANSFORMEE DE FOURIER DISCRETE

= Définition de la DFT

= Lien avec la transformée de Fourier
=Lien avec la DTFT

= Inversion de la DFT

= Ré-échantillonnage de la DTFT

= Propriétés de la DFT

Convention implicite
Signal discret N-périodique fn[n] = fn[n + EN], Vn,k € Z

10-19

Définition de la DFT

A partir d'une suite discréte’ N-périodique f[n] = fy[n], on construit une nou-
velle suite également N-périodique F'[m| appelée transformée de Fourier discréte
(DFT) de f[n]

important!

notation

DFT{f}[m] = Flm]= Y flnle ™~"

Remarque: il s’agit d’'une transformation linéaire en dimension finie qui prend un vecteur
f = (f[n]))=; € CN et lui associe un autre vecteur complexe F = (F[m]))_} € CV.

. . < o 2T
Representation matricielle :  F = Apprf ol Appr € CV*Y avec [Appr]mn, = e MmN "

— — Flm]
‘ fln] /NM | ‘ I

DFT
T =~

Unser-Vandergheynst / Sig & Sys Il _N-1 N-3 0 1 NT_I 10-20



Lien avec la transformée de Fourier

Calculons la transformée de Fourier (a temps continu) du signal continu
représentant le signal N-périodique discret fx [n]

]:{Z fnn]o(t - ”)}(W) = Z fn[n]een

N-1 ‘

- Z Z fxlno +mny Njemi (ot n=mng+nN
no=0n,€Z
N-1 . .

=Y fnlnoleTiome y e (N-périodicité de fi)
no=0 ni1€Z
N-1 .

= Z i (3\7; Z (5(w -~ m%r)> (Formule de Poisson)

n=0 me7Z

N-1
—2r (Z fN[n]e—jm%&Tn> .5(w - m%ﬂ) (Multiplication par 8)
MEZL

n=0

Il s’agit d’'un train de Diracs aux fréquences w,,, = mT% dont 'amplitude est donnée
par la DFT de fxn[n]

3 fnlnld(t — n) £ 2 N0 F[m]é(w - m%)

nez meZ
Unser-Vandergheynst / Sig & Sys Il 10-21
fwlnl > fvlnla(t —n)
nez
[ ] L A a a a 'Y a a A A A
-t
’ 0 N
| pFT \“fd V7
F[m]
Fy(e®) =35 > Flm]o(w —m3F)
meZ
F.[O] a A A A a
FIN — 1]
° ° a a a a a a a a A a
o [ ] A A 0 A 27T A A w
10-22
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Lien avec la DTFT

La version N-périodisée d’un signal f|-] € ¢1(Z) est définie par

fnlnl =Y fln+EN], avec fn[] € Loo(Z).

keZ
- ; jw\ _ 27
Echantillonnons F(e)) = Fq{ f}(w) aux fréquences w,, = m=7

F(em) = flkle ™% k=n+mN

kez

N-1
. 27 .
= E g fln 4+ nyN]e MmN 0 gmim2mn — [y m)
n=0 n,1€Z 1

>

In(n]

Donc, les échantillons de la DTFT d'un signal discret f[n] sont la DFT
de sa version N-périodisée fy[n] (aliasée en général).

En particulier: si f|-] est a support finidans [0... N — 1], fn[-] et f[-] coincident sur ce support;
dans ce cas, fy|[-] n’est pas aliasée.
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Inversion de la DFT

Grace au lien entre la DFT et la transformée de Fourier a temps continu, on a

f[n] = DFTY{F}[n] = ZF[meJ”

m=0

1 N-1 1 N—-1 /N—-1
Vérification directe: Flm]en¥m = ( flk]e M k) eIn i m
N

Remarquer la relation de dualité

DFT{DFT{f}}[n] = N f[-n]
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Propriétés de la DFT

Opération Signal discret DFT
N-périodicité fln+ N] = f[n] F[m + N] = F|m)|
Décalage fIn —no] e~ iR mno . Fm)
Retournement f[—n] F[—m)]
Modulation emoF "L fn] Flm — my)
Conjugaison fln]* F[—m]*
Dualité F[n] N - f[-m]
N—1
Convolution cyclique > flk] - g[n — K] F[m] - G[m]
k=0
N-1
Multiplication fIn] - g[n) + > Flk]- G[m — K]
k=0
N-1 | N1
m Relation de Parseval: ;O fln] - glnl* =+ ;F[m] . Glm]*
Unser-Vandergheynst / Sig & Sys Il 10-25

Ré-échantillonnage de la DTFT

Il est souvent nécessaire de calculer la DTFT d’un signal discret non-périodique en

2

d'autres echantillons fréquentiels que w,,, = m<;

On suppose que le support de f[n]est[0... N —1].

Il'y a alors deux possibilités:

= Soit exprimer la DTFT directement & I'aide de ses échantillons F'(e/“m) = F[m] en utilisant
la formule d’interpolation

N-1 N-1  N-1 N-1 o N-1 o
F(e) =37 flalem = 37 < 3 Flmjer ¥ eion — 37 L% oI Fm)n pro
= n=0 m=0 m

=0 n=0

/ /

DFT_}T{F[m]} Dy (w—wm)

ion discre novau de Dirichlet
=Y Dy (w—mZE)F[m] +— 4 orsiondeoete y

= Soit choisir une taille de périodisation N plus grande ("zero padding").
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‘O

iodis

r

é

= sinc p

Noyau de Dirichlet

Lio..n—1y[n]

Y
- N

Fenétre de moyennage causale: hy[n]

=2
=
NS
RN =
3 @
2
313
2
O
[
i
Al
——

Fa{hn}(w) =

)

-pério

Noyau de Dirichlet: Dy (w

dique

C’est une fonction 27
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y

unite

DFT et racines de I

ADFTf ou ADFT € (CNXN avec [ADFT]m,n

F—

N=21

Notation:
Wy =¢e™J

4 7 NS
LG
;%0

Yy
1z

¥

&
-y
{ﬂ.” !\4{ \ \\.' q

15

-15 -

NF

SL
e
LR

S
PN
VN =

YRR

15}

-15

0.5

-0.5

-1

0.5

-0.5
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10.3 LA TRANSFORMEE DE FOURIER RAPIDE (FFT)

= Colt d’'implémentation de la DFT

= Grandes lignes de I'algorithme rapide (FFT)
= L’algorithme dyadique

= Représentation graphique

= Colt de I'algorithme dyadique

= Cas de données réelles
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Cout d’'implémentation de la DFT

Calculer une DFT sur N points nécessite a priori N multiplications complexes
(cas de données complexes) et N —1 additions complexes par fréquence
— environ 8N’ opérations réelles au total.

Tests sur un MaclIntosh 933 MHz

—_
[$)}

f(N)=constx N’

—_
o

[$)]

courbe
expérimentale

Temps de calcul (secondes)

5000 10000 15000
Nombre de points N

Le codt de calcul devient vite trop important (en particulier pour le traitement
d'images) — nécessité d'un algorithme rapide (Cooley et Tuckey en 1965).
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Grandes lignes de I'algorithme rapide (FFT)

Pour accélérer les calculs, il faut remarquer que, si NV peut se factoriser sous la forme
N = p - q, alors on peut diviser la somme de la DFT

N—-1 .
="l WET oWy =¥
n=0

en sous-sommes qui sont autant de DFT plus petites (méthode de la

.. . Wm'ﬂlp
décimation temporelle): / N
q—1
Z Z f o +n1p m(no+n1p) Z Wm’ﬂo Z f no +nlp] Wmn1
no= On1 0 no= =0 ny= =0

DFT sur g=N/p points

Si C(N) < a- N2 est le colit d’'une DFT sur N points, on peut obtenir avec cette technique

C(N)=p-C(q) +p-N

Or C(q) < a- (N/p)?, dou

C(N) < a-N*(1/p+p/(aN)) N oond (@-N?)/p < a-N?

qui indique un gain (asymptotique) d’un facteur p.

Unser-Vandergheynst / Sig & Sys Il 10-31
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L’algorithme dyadique
Le cas le plus simple apparait pour N = 2q. Dans ce cas, la méthode de la décima-
tion temporelle avec p = 2 et ¢ = N/2 donne
N/2-1 N/2—1
= > fRm] W 4+ WR D fR2m+ 1] WY
TL1 =0 TL1 =0
F(:[rm] Fl‘[rm]
Puis, on observe que Fy[m + N/2| = Fy[m] et Fi[m + N/2] = Fy[m] (périodicité
de la DFT) d’ou la division des fréquences en deux ensembles: 0,1,...,(N/2 — 1) et
N/2,(N/24+1),...,(N —1)
F = F W F
i olm] + W& - Filml - — 0.1, (N/2 — 1)
Flm+ N/2] = Fy[m] — Wg - Fi[m]
Représentation graphique, le papillon: NB: Wyt =wpwy? = —wg
Fym] Flm]
Wx'
Fi[m] Wy F[m + N/2]
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Représentation graphique

Une itération de l'algorithme de FFT

fal

S10] F,[0] F[0] f10]
Wy
fl12] 1] F[1] f14]
DFT v
4 point
£14] POITS IeXp) FI2] 121
flel Fy[3] F[3] fle]
fil F|[0] F[4]
3 F[l F[5 [5]
f13] - (1] (5] S
4 points
f15] F[2] F[6] f13]
Sf17] F|[3] F[7]

—~
DFT 8 points

Unser-Vandergheynst / Sig & Sys Il

Cout de I'algorithme dyadique

f17]

Toutes les itérations
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Le codt d’un papillon est de deux additions complexes et d’une multiplication

et pour chacune des N/2 fréquences calculées.

Donc, si Caqa(M) et Cruie (M) sont le colt en additions et multiplications

complexes d’'une FFT sur N = 2M

points, on peut écrire

Coga(M) =2-2M71 4 2. Cpyqq(M — 1) N Caad(M) = M - 2M = Nlogy(N)
Cmult(M) =1- 2M_1 +2- C(mul‘c(]\4 - 1) Cmult(M) = 2M_1(M - 1) = % 10g2(%)

Le codt de l'algorithme FFT dyadique
est proportionnel a Nlog,(N).

En particulier, plus N est grand,
plus Nlog,(N)<< N* (colt de la DFT).

Fonction MatLab correspondante:

G = FFT(F)

Calcule la DFT du vecteur de données
F=[F(l) F(2)... F(N)] pourN arbitraire
en utilisant un algorithme de FFT.

Note: implémentation fres optimisée!

Unser-Vandergheynst / Sig & Sys Il

Temps de calcul (secondes)

D

Tests sur un Maclintosh 933 MHz

x10°

- f(N) =const x Nlog,(N)

points
expérimentaux

5000 10000
Nombre de points N

15000
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Cas de données réelles

Soient deux signaux discrets réels f[n] et g[n] de taille N dont on désire calculer la FFT.
On construit le signal complexe h[n] = f[n] + j - g[n] dont la DFT est H|m| (calculée
en O(N log, N) opérations par I'algorithme de FFT).
Comment retrouver F[m] et G[m| a partir de H|[m|?
m Solution

= linéarité de la DFT: H[m| = F[m] +j - G|m|

= symétrie Hermitienne de F'[m] et G[m)|

= H[-m]* = (F[-m] +j - G[—m])>k = F[m] —j - G[m)]

HimltHEm) o G| = Hlml=Hlom)

d’ou, par résolution, F[m] =
= 2 FFT réelles pour le prix d’'une FFT complexe (et quelques additions)!

Remarque: une idée similaire peut étre appliquée pour calculer la DFT d’un signal réel
de taille 2N a 'aide d’'une FFT complexe de taille N: choisir h[n| = f[2n]+j- f[2n+1].
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