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Système LID: excitation sinusoïdale
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f [n]
Sh{·}

g[n] = Sh{f}[n] = (h ∗ f)[n]

Sh{δ}[n] = h[n]δ[n]

(h ∗ f)[n] =
∑
k∈Z

h[k]f [n− k] Stabilité BIBO ⇔ h ∈ �1(Z)

Système LID: rappel

(h ∗ eω0)[n] =
∑
k∈Z

h[k]ejω0(n−k) =
∑
k∈Z

h[k]ejnω0e−jω0k =

(∑
k∈Z

h[k]e−jω0k

)
︸ ︷︷ ︸

H(ejω0 )=Aejθ

eω0 [n]

Excitation sinusoïdale

eω0
[n] �= ejω0n = cos(ω0n) + j sin(ω0n) avec ω0 ∈ (−π, π] (fixé)

NB: eω0 ∈ �∞(Z) (borné) implique que la convolution est bien définie pour h ∈ �1(Z)
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Définition de la DTFT
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Remarques

Bien qu’elle s’applique à des signaux discrets, la DTFT est une fonction (ou distribution)

de la variable réelle ω et est de nature continue.

La DTFT d’un signal discret est périodique de période 2π. Quand on la trace, on se

limite donc toujours à l’intervalle ω ∈ [−π, π].

La convergence de la somme vers une vraie fonction n’est assurée que si f ∈ �1(Z);

c.-à-d. si
∑

n∈Z

∣∣f [n]∣∣ < ∞.

La transformée de Fourier à temps discret (discrete-time Fourier transform, DTFT) du

signal f [n] est donnée par l’expression

Fd{f}(ω) = F{∑
n∈Z

f [n]δ(· − n)
}
(ω)

=
∑
n∈Z

f [n]e−jωn
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Lien avec la transformée en z
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On utilisera donc systématiquement la notation F (ejω) pour désigner la DTFT de f [n].

Lorsque la transformée en z de f [n] est convergente sur le cercle unité {z = ejω : ω ∈ [−π, π]},

on a

F (ejω) =
∑
n∈Z

f [n]z−n
∣∣
z=ejω

=
∑
n∈Z

f [n]e−jωn = Fd{f}(ω)

Exemple: si f [n] =
(
1
2

)n
u[n] alors Fd{f}(ω) = 1

1− 1
2e

−jω
.

Cependant, la DTFT est plus permissive que la transformée en z.

Exemple: f [n] = 1
Fd−−→

∑
n∈Z

e−jωn = 2π

(∑
n∈Z

δ(ω − 2nπ)

)
�
= 2πδperio(ω)

alors que la transformée en z de ce signal n’existe que de façon formelle,

et pas analytique.
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Vecteurs propres
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H
u λ · u

Système linéaire de dimension finie

quand u est un vecteur propre de H

Opérateur linéaire R
N → R

N : y = H · x
Matrice de transformation symétrique: H ∈ R

N×N

Vecteurs propres: u1, . . . ,uN ∈ R
N avec ‖un‖2 = 1 et 〈un,um〉 = δm−n

H · un = λn · un où λn ∈ R (valeurs propres)

Matrice des vecteurs propres: U = [u1 · · ·uN ] ∈ R
N×N

Diagonalisation: H = UΛUT avec Λ = diag(λ1, . . . , λN )
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Analogie vecteurs propres/analyse de Fourier
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Système LID

Sh
eω[n] = ejωn λω · ejωn

Opérateur LID f 	→ h ∗ f : �∞(Z) → �∞(Z) ⇔ h ∈ �1(Z)

où λω = A(ω)ejθ(ω) ∈ C

Signaux “propres”
{
eω[·]

}
ω∈(−π,π]

avec ‖eω‖�∞ = 1: sinusoïdes complexes

Sh{eω} = λω · eω où λω = H(ejω) = Sh{eω}[0] (valeurs propres)

Transformation de Fourier: Fd : f 	→ F (ejω) = 〈f, eω〉 =
∑
k∈Z

f [k]e−jωk

Conséquences pratiques: la réponse d’un système LID discret à une excitation sinusoïdale

complexe est une sinusoïde complexe de même fréquence avec un facteur d’atténuation A et

un déphasage θ qui dépendent de la fréquence. Grâce à cette propriété, la convolution peut se

calculer par simple pondération (multiplication) dans le domaine de Fourier.

Diagonalisation: Sh = F−1
d ΛHFd avec ΛH : F (ejω) 	→ H(ejω) · F (ejω)
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Lien avec la transformée de Fourier continue
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NB:
∑

n x(tn)e
−jωtn︸ ︷︷ ︸

f [n]e−jωnT

∆t︸︷︷︸
T

est la somme de Riemann de l’intégrale

∫
R

x(t)e−jωtdt.

D’où le lien entre la DTFT et la transformée de Fourier en temps continu

F{x}(ω) = X(ω) = F
(
ejωT

) · T rect

(
ωT
2π

)

=


T · F (

ejωT
)
, si ω ∈ [− π

T ,
π
T ]

0, sinon

En particulier, si x(t) est un signal continu à bande limitée dans ω ∈ [− π
T ,

π
T ] et si

f [n] = x(nT ) sont ses échantillons à la fréquence 1/T , alors on sait (Shannon) que

x(t) = sinc(t/T ) ∗ fT (t).

Un signal discret f [n] étant représentable par un signal continu

f [n]
représentation continue−−−−−−−−−−−−→ fT (t) =

∑
n∈Z

f [n] · δ(t− nT )

on remarque que F (ejωT ) = F{fT }(ω).
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Exemple: DTFT d’échantillons

de la fonction x(t) = rect(t− 1
2 )

pour T = 0.2, 0.1, et 0.25.

De manière plus générale, on peut appliquer la formule de Poisson: Si f [n] = x(nT )

sont les échantillons d’un signal à temps continu x(t), alors

F
(
ejω

)
=

1

T
X

(
ω

T

)
+

∑
k �=0

1

T
X

(
ω − 2πk

T

)

ce qui montre que la DTFT est une approximation de la transformée de Fourier de la

fonction x(Tt).
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Propriétés de la DTFT
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Relations de bases

Elles sont déduites de celles de la transformée en z.

complexe conjugué: Fd

{
f∗}(ω) = (

F (e−jω)
) ∗

renversement f∨[n] �
= f [−n]: Fd

{
f∨}(ω) = F (e−jω) =

(
F (ejω)

)∨
décalage: Fd

{
f [· − n0]

}
(ω) = e−jωn0F (ejω), n0 ∈ Z

modulation: Fd

{
ejω0nf [n]

}
(ω) = F (ej(ω−ω0))

Relation de symétrie

symétrie Hermitienne: f [n] réel ⇔ F (e−jω) =
(
F (ejω)

)∗
symétrie en n0: f [n] = f [n0 − n] ⇔ F (ejω) = e−jn0ωF (e−jω), n0 ∈ Z

antisymétrie en n0: f [n] = −f [n0 − n] ⇔ F (ejω) = −e−jn0ωF (e−jω), n0 ∈ Z

NB: les symétries sont importantes! Elle permettent de vérifier les calculs.
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Périodicité de la DTFT
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ω−π π

⇔ f [n] =
1

2π

∫ +π

−π

F (ejω)ejnωdω est le nème coefficient de Fourier de F (ejω).

F (ejω)

La DTFT est 2π-périodique

∀ω ∈ R : F (ej(ω+2π)) =
∑
k∈Z

f [k] e−j(ω+2π)k︸ ︷︷ ︸
e−jωk

= F (ejω)

Série de Fourier de la DTFT

Base orthonormale de Fourier pour l’interval ω ∈ [−π, π]: {ejnω}n∈Z

Produit scalaire: 〈X,Y 〉L2([−π,π]) =
1

2π

∫ +π

−π

X(ω)Y ∗(ω)dω

Série de Fourier: F (ejω) =
∑
n∈Z

cne
jωn =

∑
n∈Z

f [n]e−jωn ⇒ f [n] = c−n

En effet: c−k = 〈F (ejω), e−jkω〉L2([−π,π]) =
∑
n∈Z

f [n] 〈e−jωn, e−jkω〉L2([−π,π])︸ ︷︷ ︸
δ[n−k]

= f [k]
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Propriétés de la DTFT (suite)
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Stabilité: f ∈ �1(Z) ⇒ F
(
ejω

)
bornée et continue.

Inversion: f [n] = F−1
d

{
F
(
ejω

)}
[n]

�
=

1

2π

π∫
−π

F
(
ejω

)
ejnωdω

Convolution: Fd{f ∗ g}(ω) = F
(
ejω

) ·G(
ejω

)
Multiplication: Fd{f [n] · g[n]}(ω) = 1

2π

π∫
−π

F
(
ejξ

) ·G(
ej(ω−ξ)

)
dξ

Parseval:
∑
n∈Z

f [n] · g[n]∗ =
1

2π

π∫
−π

F
(
ejω

) · (G(
ejω

))∗
dω

Multiplication par nk: Fd

{
nkf [n]

}
(ω) = (j)k

dk

dωk

{
F
(
ejω

)}
Moment d’ordre k:

∑
n∈Z

nkf [n] = (j)k
dk

dωk

{
F
(
ejω

)}∣∣∣∣
ω=0
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Transformation de Fourier et filtrage
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L’effet d’un système LID, Sh : f 	→ h ∗ f , se traduit par une multiplication de la

DTFT du signal par H(ejω) où certaines composantes spectrales sont amplifiées

ou atténuées et, éventuellement, déphasées. On parle alors de filtrage.

Caractéristiques spectrales

H(ejω) = Fd{h}(ω): réponse fréquentielle du système (ou filtre discret).

Borne supérieure : Hmax = supω∈[−π,+π]

∣∣H(ejω)
∣∣ < ∞

Borne inférieure : Hmin = infω∈[−π,+π]

∣∣H(ejω)
∣∣ ≥ 0

Conséquence de la relation de Parseval

‖h ∗ f‖2�2 =
1

2π

∫ π

−π

∣∣H(ejω)
∣∣2∣∣F (ejω)

∣∣2dω
⇒ H2

min

(
1

2π

∫ π

−π

∣∣F (ejω)
∣∣2dω) ≤ ‖h∗f‖2�2 ≤ H2

max

(
1

2π

∫ π

−π

∣∣F (ejω)
∣∣2dω)

∀f ∈ �2(Z) : Hmin‖f‖�2 ≤ ‖h ∗ f‖�2 ≤ Hmax‖f‖�2



10-Unser-Vandergheynst / Sig & Sys II

Stabilité au sense            et filtrage inverse
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< +∞0 <

�2(Z)

telle que

NB: Condition moins restrictive que h ∈ �1(Z)

Théorème

Sh : f 	→ h ∗ f est �2-stable ⇔ Hmax < ∞.

Spécifiquement, on a ∀f ∈ �2(Z) : ‖h ∗ f‖�2 ≤ Hmax‖f‖�2 .

Réponse fréquentielle: H(ejω) =
∑
n∈Z

h[n]e−jωn = Fd{h}(ω)

Hmin ≤ |H(ejω)
∣∣ ≤ Hmax

Conditionnement: Hmax/Hmin

Inverse de convolution

L’opérateur Sh : f 	→ h ∗ f avec Hmax < ∞ est inversible sur �2(Z) si et seulement
si sa réponse fréquentielle est bornée en dessous (c.-à-d. Hmin > 0). Alors, S−1

h : f 	→
hinv ∗ f avec

hinv[n] = F−1
d

{
1

H(ejω)

}
[n]
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Exemples de filtres

16

π/T−π/T
⟹ Non-invertible

⟹ Invertible !

Filtre du premier ordre

ha[n] = anu[n] avec |a| < 1

Ha(e
jω) = 1

1−ae−jω

Bornes: Hmax = 1
1−|a| , Hmin = 1

1+|a|> 0

Filtre passe-bas idéal discret

hideal[n] =
1
T sinc

(
n
T

)
avec T ≥ 1

Formule de Poisson (périodisation):

Hideal(e
jω) = rect

(
ωT
2π

)
pour ω ∈ [−π,+π]

Bornes: Hmax = 1, Hmin= 0

Rappel:

sinc
(

t
T

) F←→ T rect
(
ωT
2π

)
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Signal discret DTFT (Fourier discret)

Définition f [n] F (ejω)
�
=

∑
n∈Z

f [n]e−jωn

Renversement
(
f [n]

)∨
= f [−n] F (e−jω) = F (ejω)∨

Conjugué
(
f [n]

)∗ (
F (e−jω)

)∗
Décalage f [n− n0] e−jωn0F (ejω)

Modulation ejω0nf [n] F (ej(ω−ω0))

Mult. par monône nkf [n] jk dk

dωkF (ejω)

Convolution (h ∗ f)[n] H(ejω)F (ejω)

Multiplication f [n]g[n]
1

2π

∫ π

−π

F (ejξ)G(ej(ω−ξ))dξ

Somme
∑

n∈Z
f [n] = F (ejω)

∣∣
ω=0

= F (1)

Parseval 〈f, g〉�2 =
∑
n∈Z

f [n]
(
g[n]

)∗
=

1

2π

∫ π

−π

F (ejω)
(
G(ejω)

)∗
dω
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Signal discret DTFT (Fourier discret)

1
2π δperio(ω) =

∑
m∈Z

δ(ω + 2πm)

ejω0n, ω0 ∈ R (2π)δperio(ω − ω0)

cos(ω0n) π (δperio(ω + ω0) + δperio(ω − ω0))

sin(ω0n) jπ (δperio(ω + ω0)− δperio(ω − ω0))

δ[n− n0], n0 ∈ Z e−jωn0

u[n] = +[n] =

{
1, n ≥ 0

0, sinon

1

1− e−jω
+ πδperio(ω)

[−N...N ][n] =

{
1, |n| ≤ N

0, sinon

sin (2N+1)ω
2

sin ω
2

eαnu[n], Re(α) < 0
1

1− eα−jω

(n+N−1)!
n! (N−1)! eαnu[n], Re(α) < 0

(
1

1− eα−jω

)N
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10.2 LA TRANSFORMÉE DE FOURIER DISCRÈTE

◼Définition de la DFT

◼Lien avec la transformée de Fourier

◼Lien avec la DTFT

◼ Inversion de la DFT

◼Ré-échantillonnage de la DTFT

◼Propriétés de la DFT
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Convention implicite

Signal discret N -périodique fN [n] = fN [n+ kN ], ∀n, k ∈ Z
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Définition de la DFT

    

important!
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DFT{f}[m]
notation

= F [m]
�
=

N−1∑
n=0

f [n]e−jm 2π
N n

0 1 2 N − 2 N −1  

f [n]

−
N

2
−
N

2
+1 0

N

2
−1    1

−
N −1
2

−
N − 3
2

0
N −1
2

1

DFT

N pair

N impair

F [m]

F [m]

Remarque: il s’agit d’une transformation linéaire en dimension finie qui prend un vecteur

f = (f [n])N−1
n=0 ∈ C

N et lui associe un autre vecteur complexe F = (F [m])N−1
m=0 ∈ C

N .

Representation matricielle : F = ADFTf où ADFT ∈ C
N×N avec [ADFT]m,n = e−jm 2π

N n

À partir d’une suite discrète N-périodique f [n] = fN [n], on construit une nou-

velle suite également N -périodique F [m] appelée transformée de Fourier discrète
(DFT) de f [n]
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Lien avec la transformée de Fourier

(N-périodicité de fN)

(Formule de Poisson)
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(Multiplication par δ)

Calculons la transformée de Fourier (à temps continu) du signal continu

représentant le signal N -périodique discret fN [n]

Il s’agit d’un train de Diracs aux fréquences ωm = m2π
N dont l’amplitude est donnée

par la DFT de fN [n]∑
n∈Z

fN [n]δ(t− n)
Fourier−−−−→ 2π

N

∑
m∈Z

F [m]δ
(
ω −m 2π

N

)

n = n0 + n1N

F
{∑
n∈Z

fN [n]δ(t− n)
}
(ω) =

∑
n∈Z

fN [n]e−jωn

=
N−1∑
n0=0

∑
n1∈Z

fN [n0 + n1N ]e−jω(n0+n1N)

=

N−1∑
n0=0

fN [n0]e
−jωn0

∑
n1∈Z

e−jωn1N

=

N−1∑
n=0

fN [n]e−jωn

(
2π
N

∑
m∈Z

δ
(
ω −m 2π

N

))

= 2π
N

∑
m∈Z

(
N−1∑
n=0

fN [n]e−jm
2π
N n

)
︸ ︷︷ ︸

F [m]

· δ
(
ω −m 2π

N

)
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fN [n] = fN [n+ kN ]

F [m] = F [m+ kN ]

DFT

F [0]

F [N − 1]

∑
n∈Z

fN [n]δ(t− n)

t
0 N

ω
0 2π

FFd

FN (ejω) = 2π
N

∑
m∈Z

F [m]δ(ω −m 2π
N )
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Lien avec la DTFT
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Donc, les échantillons de la DTFT d’un signal discret f [n] sont la DFT

de sa version N -périodisée fN [n] (aliasée en général).

La version N -périodisée d’un signal f [·] ∈ �1(Z) est définie par

fN [n] =
∑
k∈Z

f [n+ kN ], avec fN [·] ∈ �∞(Z).

En particulier: si f [·] est à support fini dans [0 . . . N − 1], fN [·] et f [·] coïncident sur ce support;

dans ce cas, fN [·] n’est pas aliasée.

k = n+ n1N

Échantillonnons F (ejω) = Fd{f}(ω) aux fréquences ωm = m 2π
N

F (ejωm) =
∑
k∈Z

f [k]e−jm 2π
N k

=
N−1∑
n=0

∑
n1∈Z

f [n+ n1N ]

︸ ︷︷ ︸
fN [n]

e−jm 2π
N n0 e−jm2πn︸ ︷︷ ︸

1

= FN [m]
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Inversion de la DFT

Vérification directe:
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Remarquer la relation de dualité

DFT
{
DFT{f}}[n] = Nf [−n]

Grâce au lien entre la DFT et la transformée de Fourier à temps continu, on a

f [n] = DFT−1{F}[n] = 1

N

N−1∑
m=0

F [m]ejn
2π
N m

1

N

N−1∑
m=0

F [m]ejn
2π
N m =

1

N

N−1∑
m=0

(
N−1∑
k=0

f [k]e−jm 2π
N k

)
ejn

2π
N m

=
1

N

N−1∑
m=0

N−1∑
k=0

f [k]ejm
2π
N (n−k)

=
1

N

N−1∑
k=0

f [k]
N−1∑
m=0

ejm
2π
N (n−k)

︸ ︷︷ ︸
Nδ[n−k]

= f [n]
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Propriétés de la DFT
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Opération Signal discret DFT

N -périodicité f [n+N ] = f [n] F [m+N ] = F [m]

Décalage f [n− n0] e−j( 2π
N m)n0 · F [m]

Retournement f [−n] F [−m]

Modulation ejm0
2π
N n · f [n] F [m−m0]

Conjugaison f [n]∗ F [−m]∗

Dualité F [n] N · f [−m]

Convolution cyclique
N−1∑
k=0

f [k] · g[n− k] F [m] ·G[m]

Multiplication f [n] · g[n] 1
N

N−1∑
k=0

F [k] ·G[m− k]

Relation de Parseval:

N−1∑
n=0

f [n] · g[n]∗ =
1

N

N−1∑
m=0

F [m] ·G[m]∗

10-Unser-Vandergheynst / Sig & Sys II

Ré-échantillonnage de la DTFT
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noyau de Dirichlet

Il y a alors deux possibilités:

Soit exprimer la DTFT directement à l’aide de ses échantillons F (ejωm) = F [m] en utilisant

la formule d’interpolation

F (ejω) =

N−1∑
n=0

f [n]e−jωn =

N−1∑
n=0

1

N

N−1∑
m=0

F [m]ejn
2π
N m

︸ ︷︷ ︸
DFT−1{F [m]}

e−jωn =

N−1∑
m=0

1

N

N−1∑
n=0

e
−j

(
ω− 2π

N m
)
n

︸ ︷︷ ︸
DN (ω−ωm)

F [m]

=
N−1∑
m=0

DN

(
ω−m 2π

N

)
F [m] ←− Version discrète

de la formule de Shannon

Soit choisir une taille de périodisation N plus grande ("zero padding").

Il est souvent nécessaire de calculer la DTFT d’un signal discret non-périodique en

d’autres échantillons fréquentiels que ωm = m 2π
N .

On suppose que le support de f [n] est [0 . . . N − 1].
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Noyau de Dirichlet = sinc périodisé
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N=4, 8, 32

Fenêtre de moyennage causale: hN [n] = 1
N [0...N−1][n] Rappel:

N−1∑
n=0

z−n =
1− z−N

1− z−1

Noyau de Dirichlet: DN (ω) = Fd{hN}(ω) = 1

N

N−1∑
n=0

e−jωn =




1
N

1−e−jωN

1−e−jω , ω �= 2πk

1, sinon.

C’est une fonction 2π-périodique

Re
(
DN (ω)

)
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DFT et racines de l’unité
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F = ADFTf où ADFT ∈ C
N×N avec [ADFT]m,n = e−jm 2π

N n = Wmn
N , m, n ∈ {0, . . . , N − 1}

Notation:

WN = e−j 2πN
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10.3 LA TRANSFORMÉE DE FOURIER RAPIDE (FFT)

◼Coût d’implémentation de la DFT

◼Grandes lignes de l’algorithme rapide (FFT)

◼L’algorithme dyadique

◼Représentation graphique

◼Coût de l’algorithme dyadique

◼Cas de données réelles
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Coût d’implémentation de la DFT

Calculer une DFT sur N points nécessite a priori N  multiplications complexes
(cas de données complexes) et N −1 additions complexes par fréquence
→ environ 8N 2  opérations réelles au total.

Le coût de calcul devient vite trop important (en particulier pour le traitement
d'images) → nécessité d'un algorithme rapide (Cooley et Tuckey en 1965).

5000 10000 15000
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  f (N) = const × N 2

courbe  
expérimentale

Tests sur un MacIntosh 933 MHz
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Grandes lignes de l’algorithme rapide (FFT)
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Wmn1p
N

F [m] =

p−1∑
n0=0

q−1∑
n1=0

f [n0 + n1p] ·Wm(n0+n1p)
N =

p−1∑
n0=0

Wmn0

N

q−1∑
n1=0

f [n0 + n1p] ·Wmn1
q︸ ︷︷ ︸

DFT sur q=N/p points

Pour accélérer les calculs, il faut remarquer que, si N peut se factoriser sous la forme

N = p · q, alors on peut diviser la somme de la DFT

F [m] =
N−1∑
n=0

f [n] ·Wmn
N où WN = e−j 2πN

en sous-sommes qui sont autant de DFT plus petites (méthode de la

décimation temporelle):

Si C(N) < α ·N2 est le coût d’une DFT sur N points, on peut obtenir avec cette technique

C(N) = p · C(q) + p ·N

Or C(q) ≤ α · (N/p)2, d’où

C(N) ≤ α ·N2(1/p+ p/(αN)) ≈
N grand

(α ·N2)/p � α ·N2

qui indique un gain (asymptotique) d’un facteur p.
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L’algorithme dyadique
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Représentation graphique, le papillon:

F0[m]

F1[m]

F [m]

F [m+N/2]

Wm
N

−Wm
N

Puis, on observe que F0[m + N/2] = F0[m] et F1[m + N/2] = F1[m] (périodicité

de la DFT) d’où la division des fréquences en deux ensembles: 0, 1, . . . , (N/2 − 1) et

N/2, (N/2 + 1), . . . , (N − 1)

F [m] = F0[m] +Wm
N · F1[m]

F [m+N/2] = F0[m]−Wm
N · F1[m]

pour m = 0, 1, · · · (N/2− 1)

NB: W
m+N/2
N = Wm

N W
N/2
N = −Wm

N

Le cas le plus simple apparaît pour N = 2q. Dans ce cas, la méthode de la décima-

tion temporelle avec p = 2 et q = N/2 donne

F [m] =

N/2−1∑
n1=0

f [2n1] ·Wmn1

N/2︸ ︷︷ ︸
F0[m]

+ Wm
N ·

N/2−1∑
n1=0

f [2n1 + 1] ·Wmn1

N/2︸ ︷︷ ︸
F1[m]
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Représentation graphique

Toutes les itérations

W8
0

W8
1

W8
2

W8
3

−W8
0

−W8
1

−W8
2

−W8
3

F[0]

F[1]

F[2]

F[3]

F[4]

F[5]

F[6]

F[7]

f [0]

f [4]

f [2]

f [6]

f [1]

f [5]

f [3]

f [7]

W4
0

W4
1

−W4
0

−W4
1

W4
0

W4
1

−W4
0

−W4
1

W2
0

−W2
0

W2
0

−W2
0

W2
0

−W2
0

W2
0

−W2
0

W8
0

W8
1

W8
2

W8
3

−W8
0

−W8
1

−W8
2

−W8
3

F0[0]

F0[1]

F0[2]

F0[3]

F1[0]

F1[1]

F1[2]

F1[3]

F[0]

F[1]

F[2]

F[3]

F[4]

F[5]

F[6]

F[7]

DFT
4 points

DFT
4 points

f [0]

f [2]

f [4]

f [6]

f [1]

f [3]

f [5]

f [7]

Une itération de l’algorithme de FFT

︸ ︷︷ ︸
DFT 8 points
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Coût de l’algorithme dyadique
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Tests sur un MacIntosh 933 MHz
Le coût de l’algorithme FFT dyadique
est proportionnel à N log2 (N) .

En particulier, plus N  est grand,
plus N log2(N) << N

2 (coût de la DFT).

Fonction MatLab correspondante:
G = FFT(F)
Calcule la DFT du vecteur de données
F=[F(1) F(2)... F(N)] pour N arbitraire
en utilisant un algorithme de FFT.
Note: implémentation très optimisée!

34

Cadd(M) = 2 · 2M−1 + 2 · Cadd(M − 1)
Cmult(M) = 1 · 2M−1 + 2 · Cmult(M − 1)

⇔ Cadd(M) = M · 2M = N log2(N)
Cmult(M) = 2M−1(M − 1) = N

2 log2(
N
2 )

Le coût d’un papillon est de deux additions complexes et d’une multiplication

et pour chacune des N/2 fréquences calculées.

Donc, si Cadd(M) et Cmult(M) sont le coût en additions et multiplications

complexes d’une FFT sur N = 2M points, on peut écrire
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Cas de données réelles
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Soient deux signaux discrets réels f [n] et g[n] de taille N dont on désire calculer la FFT.

On construit le signal complexe h[n] = f [n] + j · g[n] dont la DFT est H[m] (calculée

en O(N log2 N ) opérations par l’algorithme de FFT).

Comment retrouver F [m] et G[m] à partir de H[m]?

Remarque: une idée similaire peut être appliquée pour calculer la DFT d’un signal réel

de taille 2N à l’aide d’une FFT complexe de taille N : choisir h[n] = f [2n]+j ·f [2n+1].

Solution

linéarité de la DFT: H[m] = F [m] + j ·G[m]

symétrie Hermitienne de F [m] et G[m]

⇒ H[−m]∗ =
(
F [−m] + j ·G[−m]

)∗
= F [m]− j ·G[m]

d’où, par résolution, F [m] = H[m]+H[−m]∗

2 et G[m] = H[m]−H[−m]∗

2j .

⇒ 2 FFT réelles pour le prix d’une FFT complexe (et quelques additions)!


